AGU Fall Meeting (Dec 7, 2012) # A proposed mechanism for ENSO asymmetries in Transition, Duration and Amplitude Kit Yan Choi (Princeton University) Gabriel A. Vecchi (GFDL) #### El Niño - Southern Oscillation Asymmetries: • Amplitude: El Niño tends to be stronger than La Niña Duration: La Niña persists longer Sequencing: El Niño tends to be followed by La Niña Warm-to-Cold is more likely than Cold-to-Warm Warm-to-Cold is more likely than Cold-to-Warm What causes the asymmetries of ENSO in (1) Amplitude (2) Duration and (3) Sequencing? ## Proposed mechanism Air-Sea coupling efficiency is **higher** during **warm** conditions, **lower** during **cold** conditions, at the Pacific Ocean. This can result in the above asymmetries in a consistent way. ## Air-Sea coupling for ENSO Efficiency: how strong surface wind stress responds to changes in SST ## Wind responds more strongly to warm conditions ## Wind responds more strongly to warm conditions ## Wind responds more strongly to warm conditions $$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$ **Damping** Positive feedback Delayed Negative feedback $$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$ $$\tau^x = \gamma T + r \gamma |T|$$ $$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$ $$\tau^x = \gamma T + r\gamma |T|$$ $$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$ $$\tau^x = \gamma T + r \gamma |T|$$ $$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$ $$\tau^x = \gamma T + r\gamma |T|$$ NCEP1: r~0% FSU: r~26-38% ERA40 : r ~ 21-27% MERRA: r ~ 19% CM2.1: r~ 46% CM2.5 : r ~ 15% AM2.1: r~46% #### Two scenarios: 1) Oscillations of a stable system triggered by stochastic noise ## 2) Self-sustained oscillation Warm-to-Cold is more likely than Cold-to-Warm Warm-to-Cold is more likely than Cold-to-Warm r = 0 % Warm-to-Cold is more likely than Cold-to-Warm r = 0 % Warm-to-Cold is more likely than Cold-to-Warm r = 40 % Warm-to-Cold is more likely than Cold-to-Warm r = 60 % Why does the polarity dependence in the coupling efficiency result in the asymmetries? Coupling efficiency = 0, no oscillation Coupling efficiency is small Coupling efficiency is larger Larger coupling efficiency for El Nino o El Nino terminates faster and overshoots Smaller coupling efficiency for La Nina \to La Nina terminates slower and is more susceptible to noise Why does the polarity dependence in the coupling efficiency result in the asymmetries? Coupling efficiency = 0, no oscillation Coupling efficiency is small Coupling efficiency is larger Larger coupling efficiency for El Nino \rightarrow El Nino terminates faster and overshoots Smaller coupling efficiency for La Nina \to La Nina terminates slower and is more susceptible to noise #### The time mean state is, in fact, a warm state #### The time mean state is, in fact, a warm state That accounts for a fraction of the duration asymmetry. #### Summary • Within the framework of a delayed-oscillator, if the wind response is more sensitive to warm SST anomalies, or more generally, #### if the coupling efficiency is higher during warm events: - Higher likelihood of warm o cold than cold o warm - Cold events last longer and are more susceptible to noise - The time mean state is a warm state These results hold for the stochastically-forced stable mode and self-sustained oscillatory mode. Thank You! #### Two scenarios: 1) Oscillations of a stable system triggered by stochastic noise ## 2) Self-sustained oscillation ## El Niño - Southern Oscillation Flipped upside down $$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2)$$ $$\tau^{x} = \gamma T + r\gamma |T| + N(0, \sigma)$$ NCEP1: r~0% FSU: r~26-38% ERA40 : $r \sim 21-27\%$ MERRA: r ~ 19% CM2.1: r~ 46% CM2.5 : $r \sim 15\%$ AM2.1: r~46% $$\frac{\partial T}{\partial t} = -bT + c\tau^x(t - t_1) - d\tau^x(t - t_2) - \epsilon T^3$$ $$\tau^{x} = \gamma T + r\gamma |T| + N(0, \sigma)$$ NCEP1: r~0% FSU: r~26-38% ERA40 : $r \sim 21-27\%$ MERRA: r ~ 19% CM2.1: r~ 46% CM2.5 : $r \sim 15\%$ $AM2.1 : r \sim 46\%$